PyKaldi2: Yet another speech toolkit based on Kaldi and PyTorch

12 Jul 2019  ·  Liang Lu, Xiong Xiao, Zhuo Chen, Yifan Gong ·

We introduce PyKaldi2 speech recognition toolkit implemented based on Kaldi and PyTorch. While similar toolkits are available built on top of the two, a key feature of PyKaldi2 is sequence training with criteria such as MMI, sMBR and MPE. In particular, we implemented the sequence training module with on-the-fly lattice generation during model training in order to simplify the training pipeline. To address the challenging acoustic environments in real applications, PyKaldi2 also supports on-the-fly noise and reverberation simulation to improve the model robustness. With this feature, it is possible to backpropogate the gradients from the sequence-level loss to the front-end feature extraction module, which, hopefully, can foster more research in the direction of joint front-end and backend learning. We performed benchmark experiments on Librispeech, and show that PyKaldi2 can achieve reasonable recognition accuracy. The toolkit is released under the MIT license.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here