Pyramidal Edge-maps and Attention based Guided Thermal Super-resolution

13 Mar 2020  ·  Honey Gupta, Kaushik Mitra ·

Guided super-resolution (GSR) of thermal images using visible range images is challenging because of the difference in the spectral-range between the images. This in turn means that there is significant texture-mismatch between the images, which manifests as blur and ghosting artifacts in the super-resolved thermal image. To tackle this, we propose a novel algorithm for GSR based on pyramidal edge-maps extracted from the visible image. Our proposed network has two sub-networks. The first sub-network super-resolves the low-resolution thermal image while the second obtains edge-maps from the visible image at a growing perceptual scale and integrates them into the super-resolution sub-network with the help of attention-based fusion. Extraction and integration of multi-level edges allows the super-resolution network to process texture-to-object level information progressively, enabling more straightforward identification of overlapping edges between the input images. Extensive experiments show that our model outperforms the state-of-the-art GSR methods, both quantitatively and qualitatively.

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here