QADiver: Interactive Framework for Diagnosing QA Models

1 Dec 2018Gyeongbok LeeSungdong KimSeung-won Hwang

Question answering (QA) extracting answers from text to the given question in natural language, has been actively studied and existing models have shown a promise of outperforming human performance when trained and evaluated with SQuAD dataset. However, such performance may not be replicated in the actual setting, for which we need to diagnose the cause, which is non-trivial due to the complexity of model... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.