Diversity Policy Gradient for Sample Efficient Quality-Diversity Optimization

A fascinating aspect of nature lies in its ability to produce a large and diverse collection of organisms that are all high-performing in their niche. By contrast, most AI algorithms focus on finding a single efficient solution to a given problem. Aiming for diversity in addition to performance is a convenient way to deal with the exploration-exploitation trade-off that plays a central role in learning. It also allows for increased robustness when the returned collection contains several working solutions to the considered problem, making it well-suited for real applications such as robotics. Quality-Diversity (QD) methods are evolutionary algorithms designed for this purpose. This paper proposes a novel algorithm, QDPG, which combines the strength of Policy Gradient algorithms and Quality Diversity approaches to produce a collection of diverse and high-performing neural policies in continuous control environments. The main contribution of this work is the introduction of a Diversity Policy Gradient (DPG) that exploits information at the time-step level to drive policies towards more diversity in a sample-efficient manner. Specifically, QDPG selects neural controllers from a MAP-Elites grid and uses two gradient-based mutation operators to improve both quality and diversity. Our results demonstrate that QDPG is significantly more sample-efficient than its evolutionary competitors.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here