Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation

25 Mar 2022  ·  Josiah Park, Stephan Wojtowytsch ·

In this article, we prove approximation theorems in classes of deep and shallow neural networks with analytic activation functions by elementary arguments. We prove for both real and complex networks with non-polynomial activation that the closure of the class of neural networks coincides with the closure of the space of polynomials. The closure can further be characterized by the Stone-Weierstrass theorem (in the real case) and Mergelyan's theorem (in the complex case). In the real case, we further prove approximation results for networks with higher-dimensional harmonic activation and orthogonally projected linear maps. We further show that fully connected and residual networks of large depth with polynomial activation functions can approximate any polynomial under certain width requirements. All proofs are entirely elementary.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here