Quantifying and Learning Linear Symmetry-Based Disentanglement

The definition of Linear Symmetry-Based Disentanglement (LSBD) formalizes the notion of linearly disentangled representations, but there is currently no metric to quantify LSBD. Such a metric is crucial to evaluate LSBD methods and to compare to previous understandings of disentanglement. We propose $\mathcal{D}_\mathrm{LSBD}$, a mathematically sound metric to quantify LSBD, and provide a practical implementation for $\mathrm{SO}(2)$ groups. Furthermore, from this metric we derive LSBD-VAE, a semi-supervised method to learn LSBD representations. We demonstrate the utility of our metric by showing that (1) common VAE-based disentanglement methods don't learn LSBD representations, (2) LSBD-VAE as well as other recent methods can learn LSBD representations, needing only limited supervision on transformations, and (3) various desirable properties expressed by existing disentanglement metrics are also achieved by LSBD representations.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here