Quantifying causal influences

29 Mar 2012Dominik JanzingDavid BalduzziMoritz Grosse-WentrupBernhard Schölkopf

Many methods for causal inference generate directed acyclic graphs (DAGs) that formalize causal relations between $n$ variables. Given the joint distribution on all these variables, the DAG contains all information about how intervening on one variable changes the distribution of the other $n-1$ variables... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet