Quantifying efficiency gains of innovative designs of two-arm vaccine trials for COVID-19 using an epidemic simulation model

13 Mar 2021  ·  Rob Johnson, Chris Jackson, Anne Presanis, Sofia S. Villar, Daniela De Angelis ·

Clinical trials of a vaccine during an epidemic face particular challenges, such as the pressure to identify an effective vaccine quickly to control the epidemic, and the effect that time-space-varying infection incidence has on the power of a trial. We illustrate how the operating characteristics of different trial design elements may be evaluated using a network epidemic and trial simulation model, based on COVID-19 and individually randomised two-arm trials with a binary outcome. We show that "ring" recruitment strategies, prioritising participants at high risk of infection, can result in substantial improvement in terms of power, if sufficiently many contacts of observed cases are at high risk. In addition, we introduce a novel method to make more efficient use of the data from the earliest cases of infection observed in the trial, whose infection may have been too early to be vaccine-preventable. Finally, we compare several methods of response-adaptive randomisation, discussing their advantages and disadvantages in this two-arm context and identifying particular adaptation strategies that preserve power and estimation properties, while slightly reducing the number of infections, given an effective vaccine.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here