Quantization of Generative Adversarial Networks for Efficient Inference: a Methodological Study

31 Aug 2021  ·  Pavel Andreev, Alexander Fritzler, Dmitry Vetrov ·

Generative adversarial networks (GANs) have an enormous potential impact on digital content creation, e.g., photo-realistic digital avatars, semantic content editing, and quality enhancement of speech and images. However, the performance of modern GANs comes together with massive amounts of computations performed during the inference and high energy consumption. That complicates, or even makes impossible, their deployment on edge devices. The problem can be reduced with quantization -- a neural network compression technique that facilitates hardware-friendly inference by replacing floating-point computations with low-bit integer ones. While quantization is well established for discriminative models, the performance of modern quantization techniques in application to GANs remains unclear. GANs generate content of a more complex structure than discriminative models, and thus quantization of GANs is significantly more challenging. To tackle this problem, we perform an extensive experimental study of state-of-art quantization techniques on three diverse GAN architectures, namely StyleGAN, Self-Attention GAN, and CycleGAN. As a result, we discovered practical recipes that allowed us to successfully quantize these models for inference with 4/8-bit weights and 8-bit activations while preserving the quality of the original full-precision models.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods