Quantum Algorithms and Lower Bounds for Finite-Sum Optimization

5 Jun 2024  ·  Yexin Zhang, Chenyi Zhang, Cong Fang, LiWei Wang, Tongyang Li ·

Finite-sum optimization has wide applications in machine learning, covering important problems such as support vector machines, regression, etc. In this paper, we initiate the study of solving finite-sum optimization problems by quantum computing. Specifically, let $f_1,\ldots,f_n\colon\mathbb{R}^d\to\mathbb{R}$ be $\ell$-smooth convex functions and $\psi\colon\mathbb{R}^d\to\mathbb{R}$ be a $\mu$-strongly convex proximal function. The goal is to find an $\epsilon$-optimal point for $F(\mathbf{x})=\frac{1}{n}\sum_{i=1}^n f_i(\mathbf{x})+\psi(\mathbf{x})$. We give a quantum algorithm with complexity $\tilde{O}\big(n+\sqrt{d}+\sqrt{\ell/\mu}\big(n^{1/3}d^{1/3}+n^{-2/3}d^{5/6}\big)\big)$, improving the classical tight bound $\tilde{\Theta}\big(n+\sqrt{n\ell/\mu}\big)$. We also prove a quantum lower bound $\tilde{\Omega}(n+n^{3/4}(\ell/\mu)^{1/4})$ when $d$ is large enough. Both our quantum upper and lower bounds can extend to the cases where $\psi$ is not necessarily strongly convex, or each $f_i$ is Lipschitz but not necessarily smooth. In addition, when $F$ is nonconvex, our quantum algorithm can find an $\epsilon$-critial point using $\tilde{O}(n+\ell(d^{1/3}n^{1/3}+\sqrt{d})/\epsilon^2)$ queries.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here