Quantum-Assisted Optical Interferometers: Instrument Requirements

4 Dec 2020  ·  Andrei Nomerotski, Paul Stankus, Anže Slosar, Stephen Vintskevich, Shane Andrewski, Gabriella Carini, Denis Dolzhenko, Duncan England, Eden Figueroa, Sonali Gera, Justine Haupt, Sven Herrmann, Dimitrios Katramatos, Michael Keach, Alexander Parsells, Olli Saira, Jonathan Schiff, Peter Svihra, Thomas Tsang, Yingwen Zhang ·

It has been recently suggested that optical interferometers may not require a phase-stable optical link between the stations if instead sources of quantum-mechanically entangled pairs could be provided to them, enabling extra-long baselines and benefiting numerous topics in astrophysics and cosmology. We developed a new variation of this idea, proposing that photons from two different sources could be interfered at two decoupled stations, requiring only a slow classical connection between them. We show that this approach could allow high-precision measurements of the relative astrometry of the two sources, with a simple estimate giving angular resolution of $10 \ \mu$as in a few hours' observation of two bright stars. We also give requirements on the instrument for these observations, in particular on its temporal and spectral resolution. Finally, we discuss possible technologies for the instrument implementation and first proof-of-principle experiments.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Instrumentation and Methods for Astrophysics Quantum Physics