Quantum Computing, Postselection, and Probabilistic Polynomial-Time

23 Dec 2004  ·  Scott Aaronson ·

I study the class of problems efficiently solvable by a quantum computer, given the ability to "postselect" on the outcomes of measurements. I prove that this class coincides with a classical complexity class called PP, or Probabilistic Polynomial-Time. Using this result, I show that several simple changes to the axioms of quantum mechanics would let us solve PP-complete problems efficiently. The result also implies, as an easy corollary, a celebrated theorem of Beigel, Reingold, and Spielman that PP is closed under intersection, as well as a generalization of that theorem due to Fortnow and Reingold. This illustrates that quantum computing can yield new and simpler proofs of major results about classical computation.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Quantum Physics Computational Complexity