Quantum Energy Regression using Scattering Transforms

6 Feb 2015  ·  Matthew Hirn, Nicolas Poilvert, Stéphane Mallat ·

We present a novel approach to the regression of quantum mechanical energies based on a scattering transform of an intermediate electron density representation. A scattering transform is a deep convolution network computed with a cascade of multiscale wavelet transforms. It possesses appropriate invariant and stability properties for quantum energy regression. This new framework removes fundamental limitations of Coulomb matrix based energy regressions, and numerical experiments give state-of-the-art accuracy over planar molecules.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods