Quantum-Inspired Algorithms from Randomized Numerical Linear Algebra

9 Nov 2020  ·  Nadiia Chepurko, Kenneth L. Clarkson, Lior Horesh, David P. Woodruff ·

We create classical (non-quantum) dynamic data structures supporting queries for recommender systems and least-squares regression that are comparable to their quantum analogues. De-quantizing such algorithms has received a flurry of attention in recent years; we obtain sharper bounds for these problems... More significantly, we achieve these improvements by arguing that the previous quantum-inspired algorithms for these problems are doing leverage or ridge-leverage score sampling in disguise; these are powerful and standard techniques in randomized numerical linear algebra. With this recognition, we are able to employ the large body of work in numerical linear algebra to obtain algorithms for these problems that are simpler or faster (or both) than existing approaches. read more

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here