Quantum Robust Fitting

12 Jun 2020  ·  Tat-Jun Chin, David Suter, Shin-Fang Chng, James Quach ·

Many computer vision applications need to recover structure from imperfect measurements of the real world. The task is often solved by robustly fitting a geometric model onto noisy and outlier-contaminated data. However, recent theoretical analyses indicate that many commonly used formulations of robust fitting in computer vision are not amenable to tractable solution and approximation. In this paper, we explore the usage of quantum computers for robust fitting. To do so, we examine and establish the practical usefulness of a robust fitting formulation inspired by Fourier analysis of Boolean functions. We then investigate a quantum algorithm to solve the formulation and analyse the computational speed-up possible over the classical algorithm. Our work thus proposes one of the first quantum treatments of robust fitting for computer vision.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here