Dynamical Triangulation Induced by Quantum Walk

24 Jul 2019  ·  Quentin Aristote, Nathanaël Eon, Giuseppe Di Molfetta ·

We present the single-particle sector of a quantum cellular automaton, namely a quantum walk, on a simple dynamical triangulated $2-$manifold. The triangulation is changed through Pachner moves, induced by the walker density itself, allowing the surface to transform into any topologically equivalent one... This model extends the quantum walk over triangular grid, introduced in a previous work, by one of the authors, whose space-time limit recovers the Dirac equation in (2+1)-dimensions. Numerical simulations show that the number of triangles and the local curvature grow as $t^\alpha e^{-\beta t^2}$, where $\alpha$ and $\beta$ parametrize the way geometry changes upon the local density of the walker, and that, in the long run, flatness emerges. Finally, we also prove that the global behavior of the walker, remains the same under spacetime random fluctuations. read more

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here