QuCNN : A Quantum Convolutional Neural Network with Entanglement Based Backpropagation

11 Oct 2022  ·  Samuel A. Stein, Ying Mao, James Ang, Ang Li ·

Quantum Machine Learning continues to be a highly active area of interest within Quantum Computing. Many of these approaches have adapted classical approaches to the quantum settings, such as QuantumFlow, etc. We push forward this trend and demonstrate an adaption of the Classical Convolutional Neural Networks to quantum systems - namely QuCNN. QuCNN is a parameterised multi-quantum-state based neural network layer computing similarities between each quantum filter state and each quantum data state. With QuCNN, back propagation can be achieved through a single-ancilla qubit quantum routine. QuCNN is validated by applying a convolutional layer with a data state and a filter state over a small subset of MNIST images, comparing the back propagated gradients, and training a filter state against an ideal target state.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here