Query-based Attention CNN for Text Similarity Map

15 Sep 2017  ·  Tzu-Chien Liu, Yu-Hsueh Wu, Hung-Yi Lee ·

In this paper, we introduce Query-based Attention CNN(QACNN) for Text Similarity Map, an end-to-end neural network for question answering. This network is composed of compare mechanism, two-staged CNN architecture with attention mechanism, and a prediction layer. First, the compare mechanism compares between the given passage, query, and multiple answer choices to build similarity maps. Then, the two-staged CNN architecture extracts features through word-level and sentence-level. At the same time, attention mechanism helps CNN focus more on the important part of the passage based on the query information. Finally, the prediction layer find out the most possible answer choice. We conduct this model on the MovieQA dataset using Plot Synopses only, and achieve 79.99% accuracy which is the state of the art on the dataset.

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here