Query Learning Algorithm for Ordered Multi-Terminal Binary Decision Diagrams

3 Mar 2023  ·  Atsuyoshi Nakamura ·

We propose a query learning algorithm for ordered multi-terminal binary decision diagrams (OMTBDDs) using at most n equivalence and 2n(l\lcei\log_2 m\rceil+ 3n) membership queries by extending the algorithm for ordered binary decision diagrams (OBDDs). Tightness of our upper bounds is checked in our experiments using synthetically generated target OMTBDDs. Possibility of applying our algorithm to classification problems is also indicated in our other experiments using datasets of UCI Machine Learning Repository.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here