Query2Vec: An Evaluation of NLP Techniques for Generalized Workload Analytics

17 Jan 2018 Shrainik Jain Bill Howe Jiaqi Yan Thierry Cruanes

We consider methods for learning vector representations of SQL queries to support generalized workload analytics tasks, including workload summarization for index selection and predicting queries that will trigger memory errors. We consider vector representations of both raw SQL text and optimized query plans, and evaluate these methods on synthetic and real SQL workloads... (read more)

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet