QUIC-SVD: Fast SVD Using Cosine Trees

The Singular Value Decomposition is a key operation in many machine learning methods. Its computational cost, however, makes it unscalable and impractical for the massive-sized datasets becoming common in applications. We present a new method, QUIC-SVD, for fast approximation of the full SVD with automatic sample size minimization and empirical relative error control. Previous Monte Carlo approaches have not addressed the full SVD nor benefited from the efficiency of automatic, empirically-driven sample sizing. Our empirical tests show speedups of several orders of magnitude over exact SVD. Such scalability should enable QUIC-SVD to meet the needs of a wide array of methods and applications.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here