R-MADDPG for Partially Observable Environments and Limited Communication

16 Feb 2020Rose E. WangMichael EverettJonathan P. How

There are several real-world tasks that would benefit from applying multiagent reinforcement learning (MARL) algorithms, including the coordination among self-driving cars. The real world has challenging conditions for multiagent learning systems, such as its partial observable and nonstationary nature... (read more)

PDF Abstract


No code implementations yet. Submit your code now

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet