R2RNet: Low-light Image Enhancement via Real-low to Real-normal Network

28 Jun 2021  ·  Jiang Hai, Zhu Xuan, Songchen Han, Ren Yang, Yutong Hao, Fengzhu Zou, Fang Lin ·

Images captured in weak illumination conditions could seriously degrade the image quality. Solving a series of degradation of low-light images can effectively improve the visual quality of images and the performance of high-level visual tasks. In this study, a novel Retinex-based Real-low to Real-normal Network (R2RNet) is proposed for low-light image enhancement, which includes three subnets: a Decom-Net, a Denoise-Net, and a Relight-Net. These three subnets are used for decomposing, denoising, contrast enhancement and detail preservation, respectively. Our R2RNet not only uses the spatial information of the image to improve the contrast but also uses the frequency information to preserve the details. Therefore, our model acheived more robust results for all degraded images. Unlike most previous methods that were trained on synthetic images, we collected the first Large-Scale Real-World paired low/normal-light images dataset (LSRW dataset) to satisfy the training requirements and make our model have better generalization performance in real-world scenes. Extensive experiments on publicly available datasets demonstrated that our method outperforms the existing state-of-the-art methods both quantitatively and visually. In addition, our results showed that the performance of the high-level visual task (i.e. face detection) can be effectively improved by using the enhanced results obtained by our method in low-light conditions. Our codes and the LSRW dataset are available at: https://github.com/abcdef2000/R2RNet.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here