Racing Multi-Objective Selection Probabilities

19 Jun 2014 Gaétan Marceau Marc Schoenauer

In the context of Noisy Multi-Objective Optimization, dealing with uncertainties requires the decision maker to define some preferences about how to handle them, through some statistics (e.g., mean, median) to be used to evaluate the qualities of the solutions, and define the corresponding Pareto set. Approximating these statistics requires repeated samplings of the population, drastically increasing the overall computational cost... (read more)

PDF Abstract
No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper

🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet