Rademacher Observations, Private Data, and Boosting

9 Feb 2015Richard NockGiorgio PatriniArik Friedman

The minimization of the logistic loss is a popular approach to batch supervised learning. Our paper starts from the surprising observation that, when fitting linear (or kernelized) classifiers, the minimization of the logistic loss is \textit{equivalent} to the minimization of an exponential \textit{rado}-loss computed (i) over transformed data that we call Rademacher observations (rados), and (ii) over the \textit{same} classifier as the one of the logistic loss... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet