RAMA: A Rapid Multicut Algorithm on GPU

CVPR 2022  ·  Ahmed Abbas, Paul Swoboda ·

We propose a highly parallel primal-dual algorithm for the multicut (a.k.a. correlation clustering) problem, a classical graph clustering problem widely used in machine learning and computer vision. Our algorithm consists of three steps executed recursively: (1) Finding conflicted cycles that correspond to violated inequalities of the underlying multicut relaxation, (2) Performing message passing between the edges and cycles to optimize the Lagrange relaxation coming from the found violated cycles producing reduced costs and (3) Contracting edges with high reduced costs through matrix-matrix multiplications. Our algorithm produces primal solutions and lower bounds that estimate the distance to optimum. We implement our algorithm on GPUs and show resulting one to two orders-of-magnitudes improvements in execution speed without sacrificing solution quality compared to traditional sequential algorithms that run on CPUs. We can solve very large scale benchmark problems with up to $\mathcal{O}(10^8)$ variables in a few seconds with small primal-dual gaps. Our code is available at https://github.com/pawelswoboda/RAMA.

PDF Abstract CVPR 2022 PDF CVPR 2022 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here