Matrices with Gaussian noise: optimal estimates for singular subspace perturbation

2 Mar 2018  ·  Sean O'Rourke, Van Vu, Ke Wang ·

The Davis-Kahan-Wedin $\sin \Theta$ theorem describes how the singular subspaces of a matrix change when subjected to a small perturbation. This classic result is sharp in the worst case scenario. In this paper, we prove a stochastic version of the Davis-Kahan-Wedin $\sin \Theta$ theorem when the perturbation is a Gaussian random matrix. Under certain structural assumptions, we obtain an optimal bound that significantly improves upon the classic Davis-Kahan-Wedin $\sin \Theta$ theorem. One of our key tools is a new perturbation bound for the singular values, which may be of independent interest.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here