Random Shadows and Highlights: A new data augmentation method for extreme lighting conditions

13 Jan 2021  ·  Osama Mazhar, Jens Kober ·

In this paper, we propose a new data augmentation method, Random Shadows and Highlights (RSH) to acquire robustness against lighting perturbations. Our method creates random shadows and highlights on images, thus challenging the neural network during the learning process such that it acquires immunity against such input corruptions in real world applications... It is a parameter-learning free method which can be integrated into most vision related learning applications effortlessly. With extensive experimentation, we demonstrate that RSH not only increases the robustness of the models against lighting perturbations, but also reduces over-fitting significantly. Thus RSH should be considered essential for all vision related learning systems. Code is available at: https://github.com/OsamaMazhar/Random-Shadows-Highlights. read more

PDF Abstract

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here