Random Shuffling Beats SGD after Finite Epochs

26 Jun 2018  ·  Jeff Z. HaoChen, Suvrit Sra ·

A long-standing problem in the theory of stochastic gradient descent (SGD) is to prove that its without-replacement version RandomShuffle converges faster than the usual with-replacement version. We present the first (to our knowledge) non-asymptotic solution to this problem, which shows that after a "reasonable" number of epochs RandomShuffle indeed converges faster than SGD. Specifically, we prove that under strong convexity and second-order smoothness, the sequence generated by RandomShuffle converges to the optimal solution at the rate O(1/T^2 + n^3/T^3), where n is the number of components in the objective, and T is the total number of iterations. This result shows that after a reasonable number of epochs RandomShuffle is strictly better than SGD (which converges as O(1/T)). The key step toward showing this better dependence on T is the introduction of n into the bound; and as our analysis will show, in general a dependence on n is unavoidable without further changes to the algorithm. We show that for sparse data RandomShuffle has the rate O(1/T^2), again strictly better than SGD. Furthermore, we discuss extensions to nonconvex gradient dominated functions, as well as non-strongly convex settings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods