Randomized Distributed Mean Estimation: Accuracy vs Communication

22 Nov 2016  ·  Jakub Konečný, Peter Richtárik ·

We consider the problem of estimating the arithmetic average of a finite collection of real vectors stored in a distributed fashion across several compute nodes subject to a communication budget constraint. Our analysis does not rely on any statistical assumptions about the source of the vectors. This problem arises as a subproblem in many applications, including reduce-all operations within algorithms for distributed and federated optimization and learning. We propose a flexible family of randomized algorithms exploring the trade-off between expected communication cost and estimation error. Our family contains the full-communication and zero-error method on one extreme, and an $\epsilon$-bit communication and ${\cal O}\left(1/(\epsilon n)\right)$ error method on the opposite extreme. In the special case where we communicate, in expectation, a single bit per coordinate of each vector, we improve upon existing results by obtaining $\mathcal{O}(r/n)$ error, where $r$ is the number of bits used to represent a floating point value.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here