Randomized Value Functions via Posterior State-Abstraction Sampling

5 Oct 2020  ·  Dilip Arumugam, Benjamin Van Roy ·

State abstraction has been an essential tool for dramatically improving the sample efficiency of reinforcement-learning algorithms. Indeed, by exposing and accentuating various types of latent structure within the environment, different classes of state abstraction have enabled improved theoretical guarantees and empirical performance. When dealing with state abstractions that capture structure in the value function, however, a standard assumption is that the true abstraction has been supplied or unrealistically computed a priori, leaving open the question of how to efficiently uncover such latent structure while jointly seeking out optimal behavior. Taking inspiration from the bandit literature, we propose that an agent seeking out latent task structure must explicitly represent and maintain its uncertainty over that structure as part of its overall uncertainty about the environment. We introduce a practical algorithm for doing this using two posterior distributions over state abstractions and abstract-state values. In empirically validating our approach, we find that substantial performance gains lie in the multi-task setting where tasks share a common, low-dimensional representation.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here