Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection

20 May 2020  ·  Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov, Cristian Sminchisescu ·

This paper presents a novel 3D object detection framework that processes LiDAR data directly on its native representation: range images. Benefiting from the compactness of range images, 2D convolutions can efficiently process dense LiDAR data of a scene. To overcome scale sensitivity in this perspective view, a novel range-conditioned dilation (RCD) layer is proposed to dynamically adjust a continuous dilation rate as a function of the measured range. Furthermore, localized soft range gating combined with a 3D box-refinement stage improves robustness in occluded areas, and produces overall more accurate bounding box predictions. On the public large-scale Waymo Open Dataset, our method sets a new baseline for range-based 3D detection, outperforming multiview and voxel-based methods over all ranges with unparalleled performance at long range detection.

PDF Abstract


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here