Range decreasing group homomorphisms and holomorphic maps between generalized loop spaces

11 Feb 2021  ·  Ning Zhang ·

Let $\mathcal{G}$ resp. $M$ be a positive dimensional Lie group resp. connected complex manifold without boundary and $V$ a finite dimensional $C^{\infty}$ compact connected manifold, possibly with boundary. Fix a smoothness class $\mathcal{F}=C^{\infty}$, H\"older $C^{k, \alpha}$ or Sobolev $W^{k, p}$. The space $\mathcal{F}(V, \mathcal{G})$ resp. $\mathcal{F}(V, M)$ of all $\mathcal{F}$ maps $V \to \mathcal{G}$ resp. $V \to M$ is a Banach/Fr\'echet Lie group resp. complex manifold. Let $\mathcal{F}^0(V, \mathcal{G})$ resp. $\mathcal{F}^{0}(V, M)$ be the component of $\mathcal{F}(V, \mathcal{G})$ resp. $\mathcal{F}(V, M)$ containing the identity resp. constants. A map $f$ from a domain $\Omega \subset \mathcal{F}_1(V, M)$ to $\mathcal{F}_2(W, M)$ is called range decreasing if $f(x)(W) \subset x(V)$, $x \in \Omega$. We prove that if $\dim_{\mathbb{R}} \mathcal{G} \ge 2$, then any range decreasing group homomorphism $f: \mathcal{F}_1^0(V, \mathcal{G}) \to \mathcal{F}_2(W, \mathcal{G})$ is the pullback by a map $\phi: W \to V$. We also provide several sufficient conditions for a range decreasing holomorphic map $\Omega$ $\to$ $\mathcal{F}_2(W, M)$ to be a pullback operator. Then we apply these results to study certain decomposition of holomorphic maps $\mathcal{F}_1(V, N) \supset \Omega \to \mathcal{F}_2(W, M)$. In particular, we identify some classes of holomorphic maps $\mathcal{F}_1^{0}(V, \mathbb{P}^n) \to \mathcal{F}_2(W, \mathbb{P}^m)$, including all automorphisms of $\mathcal{F}^{0}(V, \mathbb{P}^n)$.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Complex Variables Functional Analysis Representation Theory 58D15, 46T25, 22E66, 58C10, 32H02