Fast Rank Reduction for Non-negative Matrices via Mean Field Theory

9 Jun 2020  ·  Kazu Ghalamkari, Mahito Sugiyama ·

We propose an efficient matrix rank reduction method for non-negative matrices, whose time complexity is quadratic in the number of rows or columns of a matrix. Our key insight is to formulate rank reduction as a mean-field approximation by modeling matrices via a log-linear model on structured sample space, which allows us to solve the rank reduction as convex optimization. The highlight of this formulation is that the optimal solution that minimizes the KL divergence from a given matrix can be analytically computed in a closed form. We empirically show that our rank reduction method is faster than NMF and its popular variant, lraNMF, while achieving competitive low rank approximation error on synthetic and real-world datasets.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here