Rate of Convergence of Polynomial Networks to Gaussian Processes

4 Nov 2021  ·  Adam Klukowski ·

We examine one-hidden-layer neural networks with random weights. It is well-known that in the limit of infinitely many neurons they simplify to Gaussian processes. For networks with a polynomial activation, we demonstrate that the rate of this convergence in 2-Wasserstein metric is $O(n^{-\frac{1}{2}})$, where $n$ is the number of hidden neurons. We suspect this rate is asymptotically sharp. We improve the known convergence rate for other activations, to power-law in $n$ for ReLU and inverse-square-root up to logarithmic factors for erf. We explore the interplay between spherical harmonics, Stein kernels and optimal transport in the non-isotropic setting.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here