Rate Prediction and Selection in LTE systems using Modified Source Encoding Techniques

6 Mar 2014  ·  K. P. Saishankar, Sheetal Kalyani, K. Narendran ·

In current wireless systems, the base-Station (eNodeB) tries to serve its user-equipment (UE) at the highest possible rate that the UE can reliably decode. The eNodeB obtains this rate information as a quantized feedback from the UE at time n and uses this, for rate selection till the next feedback is received at time n + {\delta}. The feedback received at n can become outdated before n + {\delta}, because of a) Doppler fading, and b) Change in the set of active interferers for a UE. Therefore rate prediction becomes essential. Since, the rates belong to a discrete set, we propose a discrete sequence prediction approach, wherein, frequency trees for the discrete sequences are built using source encoding algorithms like Prediction by Partial Match (PPM). Finding the optimal depth of the frequency tree used for prediction is cast as a model order selection problem. The rate sequence complexity is analysed to provide an upper bound on model order. Information-theoretic criteria are then used to solve the model order problem. Finally, two prediction algorithms are proposed, using the PPM with optimal model order and system level simulations demonstrate the improvement in packet loss and throughput due to these algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here