Rates of convergence for density estimation with generative adversarial networks

30 Jan 2021  ·  Nikita Puchkin, Sergey Samsonov, Denis Belomestny, Eric Moulines, Alexey Naumov ·

In this work we undertake a thorough study of the non-asymptotic properties of the vanilla generative adversarial networks (GANs). We prove an oracle inequality for the Jensen-Shannon (JS) divergence between the underlying density $\mathsf{p}^*$ and the GAN estimate with a significantly better statistical error term compared to the previously known results. The advantage of our bound becomes clear in application to nonparametric density estimation. We show that the JS-divergence between the GAN estimate and $\mathsf{p}^*$ decays as fast as $(\log{n}/n)^{2\beta/(2\beta + d)}$, where $n$ is the sample size and $\beta$ determines the smoothness of $\mathsf{p}^*$. This rate of convergence coincides (up to logarithmic factors) with minimax optimal for the considered class of densities.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here