Rational neural networks

We consider neural networks with rational activation functions. The choice of the nonlinear activation function in deep learning architectures is crucial and heavily impacts the performance of a neural network. We establish optimal bounds in terms of network complexity and prove that rational neural networks approximate smooth functions more efficiently than ReLU networks with exponentially smaller depth. The flexibility and smoothness of rational activation functions make them an attractive alternative to ReLU, as we demonstrate with numerical experiments.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods