RawBoost: A Raw Data Boosting and Augmentation Method applied to Automatic Speaker Verification Anti-Spoofing

8 Nov 2021  ·  Hemlata Tak, Madhu Kamble, Jose Patino, Massimiliano Todisco, Nicholas Evans ·

This paper introduces RawBoost, a data boosting and augmentation method for the design of more reliable spoofing detection solutions which operate directly upon raw waveform inputs. While RawBoost requires no additional data sources, e.g. noise recordings or impulse responses and is data, application and model agnostic, it is designed for telephony scenarios. Based upon the combination of linear and non-linear convolutive noise, impulsive signal-dependent additive noise and stationary signal-independent additive noise, RawBoost models nuisance variability stemming from, e.g., encoding, transmission, microphones and amplifiers, and both linear and non-linear distortion. Experiments performed using the ASVspoof 2021 logical access database show that RawBoost improves the performance of a state-of-the-art raw end-to-end baseline system by 27% relative and is only outperformed by solutions that either depend on external data or that require additional intervention at the model level.

PDF Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here