Re-framing Incremental Deep Language Models for Dialogue Processing with Multi-task Learning

COLING 2020  ·  Morteza Rohanian, Julian Hough ·

We present a multi-task learning framework to enable the training of one universal incremental dialogue processing model with four tasks of disfluency detection, language modelling, part-of-speech tagging, and utterance segmentation in a simple deep recurrent setting. We show that these tasks provide positive inductive biases to each other with the optimal contribution of each one relying on the severity of the noise from the task. Our live multi-task model outperforms similar individual tasks, delivers competitive performance, and is beneficial for future use in conversational agents in psychiatric treatment.

PDF Abstract COLING 2020 PDF COLING 2020 Abstract


  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here