Reachability Analysis and Safety Verification for Neural Network Control Systems

25 May 2018Weiming XiangTaylor T. Johnson

Autonomous cyber-physical systems (CPS) rely on the correct operation of numerous components, with state-of-the-art methods relying on machine learning (ML) and artificial intelligence (AI) components in various stages of sensing and control. This paper develops methods for estimating the reachable set and verifying safety properties of dynamical systems under control of neural network-based controllers that may be implemented in embedded software... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods used in the Paper


METHOD TYPE
🤖 No Methods Found Help the community by adding them if they're not listed; e.g. Deep Residual Learning for Image Recognition uses ResNet