Real-Time and Embedded Deep Learning on FPGA for RF Signal Classification

13 Oct 2019Sohraab SoltaniYalin E. SagduyuRaqibul HasanKemal DavasliogluHongmei DengTugba Erpek

We designed and implemented a deep learning based RF signal classifier on the Field Programmable Gate Array (FPGA) of an embedded software-defined radio platform, DeepRadio, that classifies the signals received through the RF front end to different modulation types in real time and with low power. This classifier implementation successfully captures complex characteristics of wireless signals to serve critical applications in wireless security and communications systems such as identifying spoofing signals in signal authentication systems, detecting target emitters and jammers in electronic warfare (EW) applications, discriminating primary and secondary users in cognitive radio networks, interference hunting, and adaptive modulation... (read more)

PDF Abstract


No code implementations yet. Submit your code now


Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.