Real-time Pose Estimation from Images for Multiple Humanoid Robots

6 Jul 2021  ·  Arash Amini, Hafez Farazi, Sven Behnke ·

Pose estimation commonly refers to computer vision methods that recognize people's body postures in images or videos. With recent advancements in deep learning, we now have compelling models to tackle the problem in real-time. Since these models are usually designed for human images, one needs to adapt existing models to work on other creatures, including robots. This paper examines different state-of-the-art pose estimation models and proposes a lightweight model that can work in real-time on humanoid robots in the RoboCup Humanoid League environment. Additionally, we present a novel dataset called the HumanoidRobotPose dataset. The results of this work have the potential to enable many advanced behaviors for soccer-playing robots.

PDF Abstract

Datasets


Introduced in the Paper:

HumanoidRobotPose

Used in the Paper:

COCO

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here