Real-time Video Streaming and Control of Cellular-Connected UAV System: Prototype and Performance Evaluation

26 Jan 2021  ·  Hui Zhou, Fenghe Hu, Michal Juras, Asish B Mehta, Yansha Deng ·

Unmanned aerial vehicles (UAVs) play an increasingly important role in military, public, and civilian applications, where providing connectivity to UAVs is crucial for its real-time control, video streaming, and data collection. Considering that cellular networks offer wide area, high speed, and secure wireless connectivity, cellular-connected UAVs have been considered as an appealing solution to provide UAV connectivity with enhanced reliability, coverage, throughput, and security. Due to the nature of UAVs mobility, the throughput, reliability and End-to-End (E2E) delay of UAVs communication under various flight heights, video resolutions, and transmission frequencies remain unknown. To evaluate these parameters, we develop a cellular-connected UAV testbed based on the Long Term Evolution (LTE) network with its uplink video transmission and downlink control\&command (CC) transmission. We also design algorithms for sending control signal and controlling UAV. The indoor experimental results provide fundamental insights for the cellular-connected UAV system design from the perspective of transmission frequency, adaptability, and link outage, respectively.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here