Real-world Person Re-Identification via Degradation Invariance Learning

Person re-identification (Re-ID) in real-world scenarios usually suffers from various degradation factors, e.g., low-resolution, weak illumination, blurring and adverse weather. On the one hand, these degradations lead to severe discriminative information loss, which significantly obstructs identity representation learning; on the other hand, the feature mismatch problem caused by low-level visual variations greatly reduces retrieval performance. An intuitive solution to this problem is to utilize low-level image restoration methods to improve the image quality. However, existing restoration methods cannot directly serve to real-world Re-ID due to various limitations, e.g., the requirements of reference samples, domain gap between synthesis and reality, and incompatibility between low-level and high-level methods. In this paper, to solve the above problem, we propose a degradation invariance learning framework for real-world person Re-ID. By introducing a self-supervised disentangled representation learning strategy, our method is able to simultaneously extract identity-related robust features and remove real-world degradations without extra supervision. We use low-resolution images as the main demonstration, and experiments show that our approach is able to achieve state-of-the-art performance on several Re-ID benchmarks. In addition, our framework can be easily extended to other real-world degradation factors, such as weak illumination, with only a few modifications.

PDF Abstract CVPR 2020 PDF CVPR 2020 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here