Reappraising Domain Generalization in Neural Networks

15 Oct 2021  ·  Sarath Sivaprasad, Akshay Goindani, Vaibhav Garg, Ritam Basu, Saiteja Kosgi, Vineet Gandhi ·

Given that Neural Networks generalize unreasonably well in the IID setting (with benign overfitting and betterment in performance with more parameters), OOD presents a consistent failure case to better the understanding of how they learn. This paper focuses on Domain Generalization (DG), which is perceived as the front face of OOD generalization. We find that the presence of multiple domains incentivizes domain agnostic learning and is the primary reason for generalization in Tradition DG. We show that the state-of-the-art results can be obtained by borrowing ideas from IID generalization and the DG tailored methods fail to add any performance gains. Furthermore, we perform explorations beyond the Traditional DG (TDG) formulation and propose a novel ClassWise DG (CWDG) benchmark, where for each class, we randomly select one of the domains and keep it aside for testing. Despite being exposed to all domains during training, CWDG is more challenging than TDG evaluation. We propose a novel iterative domain feature masking approach, achieving state-of-the-art results on the CWDG benchmark. Overall, while explaining these observations, our work furthers insights into the learning mechanisms of neural networks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here