Receiver Design for Faster-than-Nyquist Signaling: Deep-learning-based Architectures

7 Nov 2018  ·  Peiyang Song, Fengkui Gong, Qiang Li, Guo Li, Haiyang Ding ·

Faster-than-Nyquist (FTN) is a promising paradigm to improve bandwidth utilization at the expense of additional intersymbol interference (ISI). In this paper, we apply state-of-the-art deep learning (DL) technology into receiver design for FTN signaling and propose two DL-based new architectures. Firstly, we propose an FTN signal detection based on DL and connect it with the successive interference cancellation (SIC) to replace traditional detection algorithms. Simulation results show that this architecture can achieve near-optimal performance in both uncoded and coded scenarios. Additionally, we propose a DL-based joint signal detection and decoding for FTN signaling to replace the complete baseband part in traditional FTN receivers. The performance of this new architecture has also been illustrated by simulation results. Finally, both the proposed DL-based receiver architecture has the robustness to signal to noise ratio (SNR). In a nutshell, DL has been proved to be a powerful tool for the FTN receiver design.

PDF Abstract
No code implementations yet. Submit your code now



  Add Datasets introduced or used in this paper

Results from the Paper

  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.


No methods listed for this paper. Add relevant methods here