Reconcile Prediction Consistency for Balanced Object Detection
Classification and regression are two pillars of object detectors. In most CNN-based detectors, these two pillars are optimized independently. Without direct interactions between them, the classification loss and the regression loss can not be optimized synchronously toward the optimal direction in the training phase. This clearly leads to lots of inconsistent predictions with high classification score but low localization accuracy or low classification score but high localization accuracy in the inference phase, especially for the objects of irregular shape and occlusion, which severely hurts the detection performance of existing detectors after NMS. To reconcile prediction consistency for balanced object detection, we propose a Harmonic loss to harmonize the optimization of classification branch and localization branch. The Harmonic loss enables these two branches to supervise and promote each other during training, thereby producing consistent predictions with high co-occurrence of top classification and localization in the inference phase. Furthermore, in order to prevent the localization loss from being dominated by outliers during training phase, a Harmonic IoU loss is proposed to harmonize the weight of the localization loss of different IoU-level samples. Comprehensive experiments on benchmarks PASCAL VOC and MS COCO demonstrate the generality and effectiveness of our model for facilitating existing object detectors to state-of-the-art accuracy.
PDF Abstract ICCV 2021 PDF ICCV 2021 Abstract