Reconstruct and Represent Video Contents for Captioning via Reinforcement Learning

3 Jun 2019Wei ZhangBairui WangLin MaWei Liu

In this paper, the problem of describing visual contents of a video sequence with natural language is addressed. Unlike previous video captioning work mainly exploiting the cues of video contents to make a language description, we propose a reconstruction network (RecNet) in a novel encoder-decoder-reconstructor architecture, which leverages both forward (video to sentence) and backward (sentence to video) flows for video captioning... (read more)

PDF Abstract

Code


No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.