Reconstructing undirected graphs from eigenspaces

26 Mar 2016  ·  Yohann De Castro, Thibault Espinasse, Paul Rochet ·

In this paper, we aim at recovering an undirected weighted graph of $N$ vertices from the knowledge of a perturbed version of the eigenspaces of its adjacency matrix $W$. For instance, this situation arises for stationary signals on graphs or for Markov chains observed at random times. Our approach is based on minimizing a cost function given by the Frobenius norm of the commutator $\mathsf{A} \mathsf{B}-\mathsf{B} \mathsf{A}$ between symmetric matrices $\mathsf{A}$ and $\mathsf{B}$. In the Erd\H{o}s-R\'enyi model with no self-loops, we show that identifiability (i.e., the ability to reconstruct $W$ from the knowledge of its eigenspaces) follows a sharp phase transition on the expected number of edges with threshold function $N\log N/2$. Given an estimation of the eigenspaces based on a $n$-sample, we provide support selection procedures from theoretical and practical point of views. In particular, when deleting an edge from the active support, our study unveils that our test statistic is the order of $\mathcal O(1/n)$ when we overestimate the true support and lower bounded by a positive constant when the estimated support is smaller than the true support. This feature leads to a powerful practical support estimation procedure. Simulated and real life numerical experiments assert our new methodology.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here